The Economics of Utility Ownership of Wind Energy Facilities

Brent E. Gale
Senior Vice President
MidAmerican Energy Company

666 Grand Avenue
Des Moines, Iowa 50309
(515) 242-4002
begale@midamerican.com

MidAmerican Energy 2004-07 Fossil Generation Projects

- 540 MW combined-cycle gas generation plant (GDMEC) placed in service in 2004 in central lowa
- 800 MW of super-critical, western-low-sulfur, coal-fired unit (CBEC 4) under construction in western lowa with completion in 2007; MidAmerican's share is 480 MW

MidAmerican Energy 2004-05 Wind Generation Project Overview

- 360.5 MW of 1.0 to 1.5MW turbines on 25,000+ acres in northwest and northcentral lowa
- 65 meter towers 70 meter rotors
- Primarily Class 4 wind resource with 34% capacity factor expected
- 160 MW placed in service in 2004 in northwest lowa; remainder in northcentral lowa to be in service in 2005

MidAmerican Energy 2004-05 Wind Generation Project Overview [continued]

- 37% 40% capacity factor possible with 80 meter towers and 77 meter rotors, but customer economics less favorable based on 2004 costs
- Comparative 2005 turbine, tower and blade prices for longer blades and taller towers improve customer economics; but
 - Limited 2005 deliverability
 - Exchange rate risk
 - Higher prices

MidAmerican Energy Fuel Diversity – Nameplate Capacity

Туре	2004		2008	
	MW	%	MW	%
Nuclear	785.0	14.4%	655.0	10.8%
Coal	2,870.9	52.7%	3,486.3	57.4%
Gas ¹	1,364.2	25.1%	1,364.2	22.5%
Oil ¹	70.0	1.3%	56.0	0.9%
Wind ²	112.5	2.1%	473.0	7.8%
Hydro	4.5	0.1%	4.5	0.1%
Methane	11.5	0.2%	11.5	0.2%
Refuse	2.0	0.0%		-
Purchase ³	224.7	4.1%	24.7	0.4%
Total ⁴	5,445.3	100.0%	6,075.2	100.0%

¹ Included in gas fuel capacity is 380.8 MW of dual fuel capability. Oil is alternate fuel.

⁴ Individual totals may differ due to rounding.

² The nameplate capacity for the wind is 112.5 MW. The proposed wind projects are 360.5 MW in nameplate capacity.

³ Purchases include an unknown mix of fuel.

MidAmerican Energy Fuel Diversity – Accredited Capacity

Туре	2004		2008	
	MW	%	MW	%
Nuclear	816.9	14.7%	686.9 ¹	12.2%
Coal	2,868.9	51.6%	3,484.3	61.8%
Gas	1,537.0	27.7%	1,294.0	22.9%
Oil	70.0	1.3%	56.0	1.0%
Wind	20.5 ²	0.4%	81.8 ³	1.4%
Hydro	3.2	0.1%	3.2	0.1%
Methane	11.5	0.2%	11.5	0.2%
Refuse	2.0	0.0%	-/	-
Purchase ⁴	224.7	4.0%	24.7	0.4%
Total ⁵	5,554.8	100.0%	5,642.4	100.0%

¹ Two of the nuclear units have been accredited above nameplate capacity.

⁵ Individual totals may differ due to rounding.

² July 2004 accreditation for 112.5 MW of contracted wind power.

³ Projected accreditation for 112.5 MW of contracted wind power and 360.5 MW of owned wind power.

⁴ Purchases include an unknown mix of fuel.

MidAmerican Energy Fuel Diversity – Energy

Туре	2003		2008	
	GWh	%	GWh	%
Nuclear	6,145	21.5%	5,387	19.3%
Coal	18,595	65.1%	20,914	74.7%
Gas	287	1.0%	185	0.7%
Oil	2	0.0%	2	0.0%
Wind	283	1.0%	1,359	4.9%
Hydro	23	0.1%	26	0.1%
Methane	89	0.3%	86	0.3%
Refuse	0	0.0%		-
Purchase ¹	3,136	11.0%	20	0.1%
Total ²	28,560	100.0%	27,979	100.0%

¹ Purchases include an unknown mix of fuel.

² Individual totals may differ due to rounding.

MidAmerican Energy Comparative Generation All-In Costs

- Existing Coal Units: <2.5 cents per kWh
- Existing Nuclear Units: <3.0 cents per kWh
- New Coal [CBEC 4]: 3.0 cents per kWh
- New Gas Combined Cycle: >6.0 cents per kWh
- New Gas Combustion Turbine: >10.0 cents per kWh

Wind Project Economics – 2004 All-In Cost per kWh Without Credits

Assumptions:

- \$1050/kW capital cost
- 34% capacity factor
- 50-50 capital structure
- 7% debt cost; 12.2% equity return
- 20-year depreciation life
- \$25,000 annual O & M per MW
- 20-year levelized cost per kWh = 5 cents

Wind Project Economics With 2004 Federal Production Tax Credit

- Wind Without Federal Production Tax Credit:
 5.0 cents per kWh¹
- Wind With 2004 Inflation-Adjusted Federal Production Tax Credit:

3.0 cents per kWh 1

¹ 2005 costs appear to be about 5.5 cents per kWh and 3.5 cents per kWh, respectively, using the same financing assumptions and 2005 turbine and tower costs.

Wind's Place in the Portfolio

- Wind is variable, largely nondispatchable, and not reliable for serving Midwest peak conditions
- Wind supplements baseload generation;
 it is not a substitute for it

Summer Peak Month Coincidence

Average Hourly Profiles - August 2004

Historical Annual Load/Output

Average Hourly Profiles: March 2004 - February 2005

Offsets to the Variability and Non-Dispatchability of Wind Power-Benefits of Utility Ownership

Cash Flows

- Federal Production Tax Credit
- Sale of Renewable Energy/CO2 Credits
- State Incentives
- Increased Wholesale Energy Sales
- Capacity Credit
- Federal Bonus Depreciation (2004)

Issues to Consider for the Wind Energy Power Purchase Alternative

- Debt leverage risk
- Developer counterparty business risk
- Operational/delivery risk
- Transmission risk
- Dispatchability/minimum load
- Class cost allocation
- Ownership of renewable and environmental credits

Prerequisites for a Diverse Generation Portfolio

- A clear statement of state energy policy; and
- Modification of state least-cost standards via:
 - Substitution of reasonable cost standard; or
 - Exception for renewables; or
 - Requirement to recognize externalities including the benefits of portfolio/fuel diversity

What Is Needed to Spur Development of Renewables?

- Elimination of state barriers
- A national renewable credit trading program
- Continuation of the federal Production Tax Credit at some level until the credit trading market is robust
- State Renewable Production Standard mandates are NOT required and are counterproductive

